倍增+并查集.
Description
给出一个序列, 有$q$次操作, 每次给出$a, b, l$, 表示对于所有的$0 \ldots i$, 连接$(a+i, b+i)$.
求联通块个数.
(这是抽象过的原题模型)
Solution
我们可以建若干虚拟点表示从位置$i$开始向后$2^j$格的区间.
每次可以连接一些这样的虚拟点.
需要注意一对联通虚拟点的下一层, 也就是两对更短的区间也是联通的, 最后自顶向下合并一遍即可.
代码倒是意外的短
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77
| #pragma GCC diagnostic ignored "-Wunused-but-set-variable" #include <bits/stdc++.h> #define mod 1000000007 using namespace std; const int maxn = 1e+5 + 5; typedef long long ll; int n, m; int fa[maxn * 20], mp[20][maxn], tot; int revp[maxn * 20], revl[maxn * 20]; int bin[20]; int find(int x) { return (!fa[x]) ? x : fa[x] = find(fa[x]); } inline void link(int x, int y) { int fx = find(x), fy = find(y); if (fx ^ fy) fa[fx] = fy; } inline ll quick_power(ll base, ll index) { ll ret = 1; while (index) { if (index & 1) ret = (ret * base) % mod; index >>= 1; base = base * base % mod; } return ret; } inline int rd() { register int x = 0, c = getchar(); while (!isdigit(c)) c = getchar(); while (isdigit(c)) x = x * 10 + (c ^ 48), c = getchar(); return x; } int main() { n = rd(); m = rd(); if (n == 1) { puts("10"); return 0; } int L, R, l, r; bin[0] = 1; for (int i = 1; i < 20; ++i) bin[i] = (bin[i - 1] << 1); for (int i = 1; i <= n; ++i) for (int j = 0; j < 20; ++j) { mp[j][i] = ++tot; revp[tot] = i; revl[tot] = j; } for (int i = 1; i <= m; ++i) { L = rd(); R = rd(); l = rd(); r = rd(); for (int j = 19; ~j; --j) { if (L + bin[j] - 1 <= R) { link(mp[j][L], mp[j][l]); L += bin[j]; l += bin[j]; } } } for (int j = 19; j; --j) for (int i = 1; i <= n; ++i) { int fx = find(mp[j][i]); int p = revp[fx], l = revl[fx]; link(mp[j - 1][i], mp[l - 1][p]); link(mp[j - 1][i + bin[j - 1]], mp[l - 1][p + bin[l - 1]]); } int blo = 0; for (int i = 1; i <= n; ++i) if (!fa[mp[0][i]]) blo++; ll ans = quick_power(10ll, blo - 1) * 9ll % mod; printf("%lld\n", ans); return 0; }
|